Skip to content Skip to sidebar Skip to footer

Data Engineering using AWS Data Analytics

Data Engineering using AWS Data Analytics

Last updated 2/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + subtitle | Duration: 434 Lectures ( 26h 15m ) | Size: 7.77 GB

Build Data Engineering Pipelines on AWS using Data Analytics Services - Glue, EMR, Athena, Kinesis, Lambda, Redshift

What you'll learn
Data Engineering leveraging Services under AWS Data Analytics
AWS Essentials such as s3, IAM, EC2, etc
Understanding AWS s3 for cloud based storage
Understanding details related to virtual machines on AWS known as EC2
Managing AWS IAM users, groups, roles and policies for RBAC (Role Based Access Control)
Managing Tables using AWS Glue Catalog
Engineering Batch Data Pipelines using AWS Glue Jobs
Orchestrating Batch Data Pipelines using AWS Glue Workflows
Running Queries using AWS Athena - Server less query engine service
Using AWS Elastic Map Reduce (EMR) Clusters for building Data Pipelines
Using AWS Elastic Map Reduce (EMR) Clusters for reports and dashboards
Data Ingestion using AWS Lambda Functions
Scheduling using AWS Events Bridge
Engineering Streaming Pipelines using AWS Kinesis
Streaming Web Server logs using AWS Kinesis Firehose
Overview of data processing using AWS Athena
Running AWS Athena queries or commands using CLI
Running AWS Athena queries using Python boto3
Creating AWS Redshift Cluster, Create tables and perform CRUD Operations
Copy data from s3 to AWS Redshift Tables
Understanding Distribution Styles and creating tables using Distkeys
Running queries on external RDBMS Tables using AWS Redshift Federated Queries
Running queries on Glue or Athena Catalog tables using AWS Redshift Spectrum

Requirements
A Computer with at least 8 GB RAM
Programming Experience using Python is highly desired as some of the topics are demonstrated using Python
SQL Experience is highly desired as some of the topics are demonstrated using SQL
Nice to have Data Engineering Experience using Pandas or Pyspark
This course is ideal for experienced data engineers to add AWS Analytics Services as key skills to their profile

Who this course is for
Beginner or Intermediate Data Engineers who want to learn AWS Analytics Services for Data Engineering
Intermediate Application Engineers who want to explore Data Engineering using AWS Analytics Services
Data and Analytics Engineers who want to learn Data Engineering using AWS Analytics Services
Testers who want to learn key skills to test Data Engineering applications built using AWS Analytics Services

DATAETRGTENDGARFETRUSAINEHRGAWAYETGRALEYT

you must be registered member to see linkes Register Now

Leave a comment